Fazlur Khan

61

Fazlur Khan : biography

03 April 1929 – 27 March 1982

Professional milestones

List of buildings

Some the most famous buildings Khan was responsible for performing as structural engineer include the following:

  • DeWitt-Chestnut Apartments, Chicago, 1963
  • Brunswick Building, Chicago, 1965
  • John Hancock Center, Chicago, 1965–1969
  • One Shell Square, New Orleans, Louisiana, 1972
  • 140 William Street (formerly BHP House), Melbourne, 1972
  • Sears Tower, Chicago, 1970–1973
  • U.S. Bank Center, Milwaukee, 1973
  • Hajj Terminal, King Abdulaziz International Airport, Jeddah, 1974–1980
  • King Abdulaziz University, Jeddah, 1977–1978
  • Hubert H. Humphrey Metrodome, Minneapolis, Minnesota, 1982
  • One Magnificent Mile, Chicago, completed 1983
  • Onterie Center, Chicago, completed 1986
  • United States Air Force Academy, Colorado Springs, Colorado

Awards and Chair

Among Khan’s other accomplishments, he received the Wason Medal (1971) and Alfred Lindau Award (1973) from the American Concrete Institute (ACI); the Thomas Middlebrooks Award (1972) and the Ernest Howard Award (1977) from ASCE; the Kimbrough Medal (1973) from the American Institute of Steel Construction; the Oscar Faber medal (1973) from the Institution of Structural Engineers, London; the International Award of Merit in Structural Engineering (1983) from the International Association for Bridge and Structural Engineering IABSE; the AIA Institute Honor for Distinguished Achievement (1983) from the American Institute of Architects; and the John Parmer Award (1987) from Structural Engineers Association of Illinois and Illinois Engineering Hall of Fame from Illinois Engineering Council (2006).(Engineering Legends, Richard Weingardt)

Khan was cited five times by Engineering News-Record as among those who served the best interests of the construction industry, and in 1972 he was honoured with ENR’s Man of the Year award. In 1973 he was elected to the National Academy of Engineering. He received Honorary Doctorates from Northwestern University, Lehigh University, and the Swiss Federal Institute of Technology (ETH) Zurich.

The Council on Tall Buildings and Urban Habitat (CTBUH) named an award after him called the Fazlur Khan Lifetime Achievement Medal and several other awards have been established in his honour since his passing, along with a chair at Lehigh University. Promoting educational activities and research, the Fazlur Rahman Khan Endowed Chair of Structural Engineering and Architecture honours Khan’s legacy of engineering advancement and architectural sensibility.

Innovations

Khan realised that the rigid steel frame structure that had dominated tall building design and construction so long was not the only system fitting for tall buildings, marking the beginning of a new era of skyscraper revolution in terms of multiple structural systems.

Tube structural systems

Khan’s central innovation in skyscraper design and construction was the idea of the "tube" structural system for tall buildings, including the "framed tube", "trussed tube" and "bundled tube" variations. His "tube concept," using all the exterior wall perimeter structure of a building to simulate a thin-walled tube, revolutionised tall building design. Most buildings over 40-storeys constructed since the 1960s now use a tube design derived from Khan’s structural engineering principles.

The tubular designs are for resisting lateral loads (horizontal forces) such as wind forces, seismic forces, etc. The primary important role of structural system for tall Buildings is to resist lateral loads. The lateral loads begin to dominate the structural system and take on increasing importance in the overall building system when the building height increases. Forces of winds become very substantial and forces of earthquake etc. are very important as well. It is the tubular designs that are used for tall buildings to resist such forces. Tube structures are very stiff and have numerous significant advantages over other framing systems.https://docs.google.com/viewer?a=v&q=cache:8B4PPiZ3LjMJ:www.efka.utm.my/thesis/images/4MASTER/2004/1JSB/Part1/NGSOOKJENMAC021035D04TT2.doc+chapter+2+design+philosophy+of+reinforcement+concrete+tall+building&hl=en&pid=bl&srcid=ADGEESiU-qZPyMFTJOL3UBsS7ViutQOurhn4BA8QC-XAd73cvV2HFtIcSIphPpkVU4lzwEvwyKrMppAtnHz5NE3og62jLT9CwtuGWVXUHyEeF3sfh1G9GVRZUgFOYQLLEutyyyoSn49d&sig=AHIEtbSA_8S1o-jYf1G7B4H_i3b0TiON2Q They not only make the buildings structurally stronger and more efficient, they significantly reduce the usage of materials while simultaneously allowing buildings to reach even greater heights. The reduction of material makes the buildings economically much more efficient and reduces environmental issues as it results in the least carbon emission impact on the environment. Tubular systems allow greater interior space and further enable buildings to take on various shapes, offering unprecedented freedom to architects.. Constructionweekonline.com (31 January 2011). Retrieved on 2012-06-26.Bayley, Stephen. (5 January 2010) . Telegraph. Retrieved on 2012-06-26. These new designs opened an economic door for contractors, engineers, architects, and investors, providing vast amounts of real estate space on minimal plots of land. Khan more than any other individual brought in a rebirth in skyscrapers construction after a hiatus for over thirty years.https://docs.google.com/viewer?a=v&q=cache:2RHuSbYRzRMJ:www.crcnetbase.com/doi/abs/10.4324/NOE0415232418.ch32+fazlur+khan+transformed+city+skyline&hl=en&pid=bl&srcid=ADGEESihn5j7rJIRtFoJCbwq8wShPOaHpe58yoE73coq6B9k34MzK5KG_g4uiZBYe3eN3-tzyegycQt0R19bl_DyxG3n6VhbUB22qDRSmc7qpRhhOFaROXHdb6uDXuP8wMukBd_aP404&sig=AHIEtbTdAXBk_8DZzecEJPiR1Tubq-RmxQ